Copied to
clipboard

G = C22×D4⋊D7order 448 = 26·7

Direct product of C22 and D4⋊D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×D4⋊D7, D286C23, C28.27C24, (C2×C14)⋊9D8, C143(C2×D8), C7⋊C88C23, C73(C22×D8), (C2×D4)⋊33D14, (C7×D4)⋊4C23, (C22×D4)⋊3D7, D44(C22×D7), C28.248(C2×D4), (C2×C28).206D4, C4.27(C23×D7), (C2×D28)⋊54C22, (D4×C14)⋊41C22, (C22×D28)⋊18C2, (C2×C28).536C23, (C22×C14).206D4, (C22×C4).375D14, C14.136(C22×D4), C23.104(C7⋊D4), (C22×C28).269C22, (D4×C2×C14)⋊2C2, (C22×C7⋊C8)⋊11C2, (C2×C7⋊C8)⋊38C22, C4.20(C2×C7⋊D4), C2.9(C22×C7⋊D4), (C2×C14).576(C2×D4), (C2×C4).151(C7⋊D4), (C2×C4).620(C22×D7), C22.105(C2×C7⋊D4), SmallGroup(448,1245)

Series: Derived Chief Lower central Upper central

C1C28 — C22×D4⋊D7
C1C7C14C28D28C2×D28C22×D28 — C22×D4⋊D7
C7C14C28 — C22×D4⋊D7
C1C23C22×C4C22×D4

Generators and relations for C22×D4⋊D7
 G = < a,b,c,d,e,f | a2=b2=c4=d2=e7=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=fcf=c-1, ce=ec, de=ed, fdf=cd, fef=e-1 >

Subgroups: 1684 in 338 conjugacy classes, 127 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, D4, D4, C23, C23, D7, C14, C14, C14, C2×C8, D8, C22×C4, C2×D4, C2×D4, C24, C28, C28, D14, C2×C14, C2×C14, C22×C8, C2×D8, C22×D4, C22×D4, C7⋊C8, D28, D28, C2×C28, C7×D4, C7×D4, C22×D7, C22×C14, C22×C14, C22×D8, C2×C7⋊C8, D4⋊D7, C2×D28, C2×D28, C22×C28, D4×C14, D4×C14, C23×D7, C23×C14, C22×C7⋊C8, C2×D4⋊D7, C22×D28, D4×C2×C14, C22×D4⋊D7
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, C24, D14, C2×D8, C22×D4, C7⋊D4, C22×D7, C22×D8, D4⋊D7, C2×C7⋊D4, C23×D7, C2×D4⋊D7, C22×C7⋊D4, C22×D4⋊D7

Smallest permutation representation of C22×D4⋊D7
On 224 points
Generators in S224
(1 120)(2 121)(3 122)(4 123)(5 124)(6 125)(7 126)(8 113)(9 114)(10 115)(11 116)(12 117)(13 118)(14 119)(15 134)(16 135)(17 136)(18 137)(19 138)(20 139)(21 140)(22 127)(23 128)(24 129)(25 130)(26 131)(27 132)(28 133)(29 148)(30 149)(31 150)(32 151)(33 152)(34 153)(35 154)(36 141)(37 142)(38 143)(39 144)(40 145)(41 146)(42 147)(43 162)(44 163)(45 164)(46 165)(47 166)(48 167)(49 168)(50 155)(51 156)(52 157)(53 158)(54 159)(55 160)(56 161)(57 176)(58 177)(59 178)(60 179)(61 180)(62 181)(63 182)(64 169)(65 170)(66 171)(67 172)(68 173)(69 174)(70 175)(71 190)(72 191)(73 192)(74 193)(75 194)(76 195)(77 196)(78 183)(79 184)(80 185)(81 186)(82 187)(83 188)(84 189)(85 204)(86 205)(87 206)(88 207)(89 208)(90 209)(91 210)(92 197)(93 198)(94 199)(95 200)(96 201)(97 202)(98 203)(99 218)(100 219)(101 220)(102 221)(103 222)(104 223)(105 224)(106 211)(107 212)(108 213)(109 214)(110 215)(111 216)(112 217)
(1 57)(2 58)(3 59)(4 60)(5 61)(6 62)(7 63)(8 64)(9 65)(10 66)(11 67)(12 68)(13 69)(14 70)(15 71)(16 72)(17 73)(18 74)(19 75)(20 76)(21 77)(22 78)(23 79)(24 80)(25 81)(26 82)(27 83)(28 84)(29 85)(30 86)(31 87)(32 88)(33 89)(34 90)(35 91)(36 92)(37 93)(38 94)(39 95)(40 96)(41 97)(42 98)(43 99)(44 100)(45 101)(46 102)(47 103)(48 104)(49 105)(50 106)(51 107)(52 108)(53 109)(54 110)(55 111)(56 112)(113 169)(114 170)(115 171)(116 172)(117 173)(118 174)(119 175)(120 176)(121 177)(122 178)(123 179)(124 180)(125 181)(126 182)(127 183)(128 184)(129 185)(130 186)(131 187)(132 188)(133 189)(134 190)(135 191)(136 192)(137 193)(138 194)(139 195)(140 196)(141 197)(142 198)(143 199)(144 200)(145 201)(146 202)(147 203)(148 204)(149 205)(150 206)(151 207)(152 208)(153 209)(154 210)(155 211)(156 212)(157 213)(158 214)(159 215)(160 216)(161 217)(162 218)(163 219)(164 220)(165 221)(166 222)(167 223)(168 224)
(1 22 8 15)(2 23 9 16)(3 24 10 17)(4 25 11 18)(5 26 12 19)(6 27 13 20)(7 28 14 21)(29 43 36 50)(30 44 37 51)(31 45 38 52)(32 46 39 53)(33 47 40 54)(34 48 41 55)(35 49 42 56)(57 78 64 71)(58 79 65 72)(59 80 66 73)(60 81 67 74)(61 82 68 75)(62 83 69 76)(63 84 70 77)(85 99 92 106)(86 100 93 107)(87 101 94 108)(88 102 95 109)(89 103 96 110)(90 104 97 111)(91 105 98 112)(113 134 120 127)(114 135 121 128)(115 136 122 129)(116 137 123 130)(117 138 124 131)(118 139 125 132)(119 140 126 133)(141 155 148 162)(142 156 149 163)(143 157 150 164)(144 158 151 165)(145 159 152 166)(146 160 153 167)(147 161 154 168)(169 190 176 183)(170 191 177 184)(171 192 178 185)(172 193 179 186)(173 194 180 187)(174 195 181 188)(175 196 182 189)(197 211 204 218)(198 212 205 219)(199 213 206 220)(200 214 207 221)(201 215 208 222)(202 216 209 223)(203 217 210 224)
(1 218)(2 219)(3 220)(4 221)(5 222)(6 223)(7 224)(8 211)(9 212)(10 213)(11 214)(12 215)(13 216)(14 217)(15 197)(16 198)(17 199)(18 200)(19 201)(20 202)(21 203)(22 204)(23 205)(24 206)(25 207)(26 208)(27 209)(28 210)(29 183)(30 184)(31 185)(32 186)(33 187)(34 188)(35 189)(36 190)(37 191)(38 192)(39 193)(40 194)(41 195)(42 196)(43 176)(44 177)(45 178)(46 179)(47 180)(48 181)(49 182)(50 169)(51 170)(52 171)(53 172)(54 173)(55 174)(56 175)(57 162)(58 163)(59 164)(60 165)(61 166)(62 167)(63 168)(64 155)(65 156)(66 157)(67 158)(68 159)(69 160)(70 161)(71 141)(72 142)(73 143)(74 144)(75 145)(76 146)(77 147)(78 148)(79 149)(80 150)(81 151)(82 152)(83 153)(84 154)(85 127)(86 128)(87 129)(88 130)(89 131)(90 132)(91 133)(92 134)(93 135)(94 136)(95 137)(96 138)(97 139)(98 140)(99 120)(100 121)(101 122)(102 123)(103 124)(104 125)(105 126)(106 113)(107 114)(108 115)(109 116)(110 117)(111 118)(112 119)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)(141 142 143 144 145 146 147)(148 149 150 151 152 153 154)(155 156 157 158 159 160 161)(162 163 164 165 166 167 168)(169 170 171 172 173 174 175)(176 177 178 179 180 181 182)(183 184 185 186 187 188 189)(190 191 192 193 194 195 196)(197 198 199 200 201 202 203)(204 205 206 207 208 209 210)(211 212 213 214 215 216 217)(218 219 220 221 222 223 224)
(1 63)(2 62)(3 61)(4 60)(5 59)(6 58)(7 57)(8 70)(9 69)(10 68)(11 67)(12 66)(13 65)(14 64)(15 84)(16 83)(17 82)(18 81)(19 80)(20 79)(21 78)(22 77)(23 76)(24 75)(25 74)(26 73)(27 72)(28 71)(29 105)(30 104)(31 103)(32 102)(33 101)(34 100)(35 99)(36 112)(37 111)(38 110)(39 109)(40 108)(41 107)(42 106)(43 91)(44 90)(45 89)(46 88)(47 87)(48 86)(49 85)(50 98)(51 97)(52 96)(53 95)(54 94)(55 93)(56 92)(113 175)(114 174)(115 173)(116 172)(117 171)(118 170)(119 169)(120 182)(121 181)(122 180)(123 179)(124 178)(125 177)(126 176)(127 196)(128 195)(129 194)(130 193)(131 192)(132 191)(133 190)(134 189)(135 188)(136 187)(137 186)(138 185)(139 184)(140 183)(141 217)(142 216)(143 215)(144 214)(145 213)(146 212)(147 211)(148 224)(149 223)(150 222)(151 221)(152 220)(153 219)(154 218)(155 203)(156 202)(157 201)(158 200)(159 199)(160 198)(161 197)(162 210)(163 209)(164 208)(165 207)(166 206)(167 205)(168 204)

G:=sub<Sym(224)| (1,120)(2,121)(3,122)(4,123)(5,124)(6,125)(7,126)(8,113)(9,114)(10,115)(11,116)(12,117)(13,118)(14,119)(15,134)(16,135)(17,136)(18,137)(19,138)(20,139)(21,140)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,148)(30,149)(31,150)(32,151)(33,152)(34,153)(35,154)(36,141)(37,142)(38,143)(39,144)(40,145)(41,146)(42,147)(43,162)(44,163)(45,164)(46,165)(47,166)(48,167)(49,168)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,161)(57,176)(58,177)(59,178)(60,179)(61,180)(62,181)(63,182)(64,169)(65,170)(66,171)(67,172)(68,173)(69,174)(70,175)(71,190)(72,191)(73,192)(74,193)(75,194)(76,195)(77,196)(78,183)(79,184)(80,185)(81,186)(82,187)(83,188)(84,189)(85,204)(86,205)(87,206)(88,207)(89,208)(90,209)(91,210)(92,197)(93,198)(94,199)(95,200)(96,201)(97,202)(98,203)(99,218)(100,219)(101,220)(102,221)(103,222)(104,223)(105,224)(106,211)(107,212)(108,213)(109,214)(110,215)(111,216)(112,217), (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112)(113,169)(114,170)(115,171)(116,172)(117,173)(118,174)(119,175)(120,176)(121,177)(122,178)(123,179)(124,180)(125,181)(126,182)(127,183)(128,184)(129,185)(130,186)(131,187)(132,188)(133,189)(134,190)(135,191)(136,192)(137,193)(138,194)(139,195)(140,196)(141,197)(142,198)(143,199)(144,200)(145,201)(146,202)(147,203)(148,204)(149,205)(150,206)(151,207)(152,208)(153,209)(154,210)(155,211)(156,212)(157,213)(158,214)(159,215)(160,216)(161,217)(162,218)(163,219)(164,220)(165,221)(166,222)(167,223)(168,224), (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56)(57,78,64,71)(58,79,65,72)(59,80,66,73)(60,81,67,74)(61,82,68,75)(62,83,69,76)(63,84,70,77)(85,99,92,106)(86,100,93,107)(87,101,94,108)(88,102,95,109)(89,103,96,110)(90,104,97,111)(91,105,98,112)(113,134,120,127)(114,135,121,128)(115,136,122,129)(116,137,123,130)(117,138,124,131)(118,139,125,132)(119,140,126,133)(141,155,148,162)(142,156,149,163)(143,157,150,164)(144,158,151,165)(145,159,152,166)(146,160,153,167)(147,161,154,168)(169,190,176,183)(170,191,177,184)(171,192,178,185)(172,193,179,186)(173,194,180,187)(174,195,181,188)(175,196,182,189)(197,211,204,218)(198,212,205,219)(199,213,206,220)(200,214,207,221)(201,215,208,222)(202,216,209,223)(203,217,210,224), (1,218)(2,219)(3,220)(4,221)(5,222)(6,223)(7,224)(8,211)(9,212)(10,213)(11,214)(12,215)(13,216)(14,217)(15,197)(16,198)(17,199)(18,200)(19,201)(20,202)(21,203)(22,204)(23,205)(24,206)(25,207)(26,208)(27,209)(28,210)(29,183)(30,184)(31,185)(32,186)(33,187)(34,188)(35,189)(36,190)(37,191)(38,192)(39,193)(40,194)(41,195)(42,196)(43,176)(44,177)(45,178)(46,179)(47,180)(48,181)(49,182)(50,169)(51,170)(52,171)(53,172)(54,173)(55,174)(56,175)(57,162)(58,163)(59,164)(60,165)(61,166)(62,167)(63,168)(64,155)(65,156)(66,157)(67,158)(68,159)(69,160)(70,161)(71,141)(72,142)(73,143)(74,144)(75,145)(76,146)(77,147)(78,148)(79,149)(80,150)(81,151)(82,152)(83,153)(84,154)(85,127)(86,128)(87,129)(88,130)(89,131)(90,132)(91,133)(92,134)(93,135)(94,136)(95,137)(96,138)(97,139)(98,140)(99,120)(100,121)(101,122)(102,123)(103,124)(104,125)(105,126)(106,113)(107,114)(108,115)(109,116)(110,117)(111,118)(112,119), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,70)(9,69)(10,68)(11,67)(12,66)(13,65)(14,64)(15,84)(16,83)(17,82)(18,81)(19,80)(20,79)(21,78)(22,77)(23,76)(24,75)(25,74)(26,73)(27,72)(28,71)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(43,91)(44,90)(45,89)(46,88)(47,87)(48,86)(49,85)(50,98)(51,97)(52,96)(53,95)(54,94)(55,93)(56,92)(113,175)(114,174)(115,173)(116,172)(117,171)(118,170)(119,169)(120,182)(121,181)(122,180)(123,179)(124,178)(125,177)(126,176)(127,196)(128,195)(129,194)(130,193)(131,192)(132,191)(133,190)(134,189)(135,188)(136,187)(137,186)(138,185)(139,184)(140,183)(141,217)(142,216)(143,215)(144,214)(145,213)(146,212)(147,211)(148,224)(149,223)(150,222)(151,221)(152,220)(153,219)(154,218)(155,203)(156,202)(157,201)(158,200)(159,199)(160,198)(161,197)(162,210)(163,209)(164,208)(165,207)(166,206)(167,205)(168,204)>;

G:=Group( (1,120)(2,121)(3,122)(4,123)(5,124)(6,125)(7,126)(8,113)(9,114)(10,115)(11,116)(12,117)(13,118)(14,119)(15,134)(16,135)(17,136)(18,137)(19,138)(20,139)(21,140)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,148)(30,149)(31,150)(32,151)(33,152)(34,153)(35,154)(36,141)(37,142)(38,143)(39,144)(40,145)(41,146)(42,147)(43,162)(44,163)(45,164)(46,165)(47,166)(48,167)(49,168)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,161)(57,176)(58,177)(59,178)(60,179)(61,180)(62,181)(63,182)(64,169)(65,170)(66,171)(67,172)(68,173)(69,174)(70,175)(71,190)(72,191)(73,192)(74,193)(75,194)(76,195)(77,196)(78,183)(79,184)(80,185)(81,186)(82,187)(83,188)(84,189)(85,204)(86,205)(87,206)(88,207)(89,208)(90,209)(91,210)(92,197)(93,198)(94,199)(95,200)(96,201)(97,202)(98,203)(99,218)(100,219)(101,220)(102,221)(103,222)(104,223)(105,224)(106,211)(107,212)(108,213)(109,214)(110,215)(111,216)(112,217), (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112)(113,169)(114,170)(115,171)(116,172)(117,173)(118,174)(119,175)(120,176)(121,177)(122,178)(123,179)(124,180)(125,181)(126,182)(127,183)(128,184)(129,185)(130,186)(131,187)(132,188)(133,189)(134,190)(135,191)(136,192)(137,193)(138,194)(139,195)(140,196)(141,197)(142,198)(143,199)(144,200)(145,201)(146,202)(147,203)(148,204)(149,205)(150,206)(151,207)(152,208)(153,209)(154,210)(155,211)(156,212)(157,213)(158,214)(159,215)(160,216)(161,217)(162,218)(163,219)(164,220)(165,221)(166,222)(167,223)(168,224), (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56)(57,78,64,71)(58,79,65,72)(59,80,66,73)(60,81,67,74)(61,82,68,75)(62,83,69,76)(63,84,70,77)(85,99,92,106)(86,100,93,107)(87,101,94,108)(88,102,95,109)(89,103,96,110)(90,104,97,111)(91,105,98,112)(113,134,120,127)(114,135,121,128)(115,136,122,129)(116,137,123,130)(117,138,124,131)(118,139,125,132)(119,140,126,133)(141,155,148,162)(142,156,149,163)(143,157,150,164)(144,158,151,165)(145,159,152,166)(146,160,153,167)(147,161,154,168)(169,190,176,183)(170,191,177,184)(171,192,178,185)(172,193,179,186)(173,194,180,187)(174,195,181,188)(175,196,182,189)(197,211,204,218)(198,212,205,219)(199,213,206,220)(200,214,207,221)(201,215,208,222)(202,216,209,223)(203,217,210,224), (1,218)(2,219)(3,220)(4,221)(5,222)(6,223)(7,224)(8,211)(9,212)(10,213)(11,214)(12,215)(13,216)(14,217)(15,197)(16,198)(17,199)(18,200)(19,201)(20,202)(21,203)(22,204)(23,205)(24,206)(25,207)(26,208)(27,209)(28,210)(29,183)(30,184)(31,185)(32,186)(33,187)(34,188)(35,189)(36,190)(37,191)(38,192)(39,193)(40,194)(41,195)(42,196)(43,176)(44,177)(45,178)(46,179)(47,180)(48,181)(49,182)(50,169)(51,170)(52,171)(53,172)(54,173)(55,174)(56,175)(57,162)(58,163)(59,164)(60,165)(61,166)(62,167)(63,168)(64,155)(65,156)(66,157)(67,158)(68,159)(69,160)(70,161)(71,141)(72,142)(73,143)(74,144)(75,145)(76,146)(77,147)(78,148)(79,149)(80,150)(81,151)(82,152)(83,153)(84,154)(85,127)(86,128)(87,129)(88,130)(89,131)(90,132)(91,133)(92,134)(93,135)(94,136)(95,137)(96,138)(97,139)(98,140)(99,120)(100,121)(101,122)(102,123)(103,124)(104,125)(105,126)(106,113)(107,114)(108,115)(109,116)(110,117)(111,118)(112,119), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,70)(9,69)(10,68)(11,67)(12,66)(13,65)(14,64)(15,84)(16,83)(17,82)(18,81)(19,80)(20,79)(21,78)(22,77)(23,76)(24,75)(25,74)(26,73)(27,72)(28,71)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(43,91)(44,90)(45,89)(46,88)(47,87)(48,86)(49,85)(50,98)(51,97)(52,96)(53,95)(54,94)(55,93)(56,92)(113,175)(114,174)(115,173)(116,172)(117,171)(118,170)(119,169)(120,182)(121,181)(122,180)(123,179)(124,178)(125,177)(126,176)(127,196)(128,195)(129,194)(130,193)(131,192)(132,191)(133,190)(134,189)(135,188)(136,187)(137,186)(138,185)(139,184)(140,183)(141,217)(142,216)(143,215)(144,214)(145,213)(146,212)(147,211)(148,224)(149,223)(150,222)(151,221)(152,220)(153,219)(154,218)(155,203)(156,202)(157,201)(158,200)(159,199)(160,198)(161,197)(162,210)(163,209)(164,208)(165,207)(166,206)(167,205)(168,204) );

G=PermutationGroup([[(1,120),(2,121),(3,122),(4,123),(5,124),(6,125),(7,126),(8,113),(9,114),(10,115),(11,116),(12,117),(13,118),(14,119),(15,134),(16,135),(17,136),(18,137),(19,138),(20,139),(21,140),(22,127),(23,128),(24,129),(25,130),(26,131),(27,132),(28,133),(29,148),(30,149),(31,150),(32,151),(33,152),(34,153),(35,154),(36,141),(37,142),(38,143),(39,144),(40,145),(41,146),(42,147),(43,162),(44,163),(45,164),(46,165),(47,166),(48,167),(49,168),(50,155),(51,156),(52,157),(53,158),(54,159),(55,160),(56,161),(57,176),(58,177),(59,178),(60,179),(61,180),(62,181),(63,182),(64,169),(65,170),(66,171),(67,172),(68,173),(69,174),(70,175),(71,190),(72,191),(73,192),(74,193),(75,194),(76,195),(77,196),(78,183),(79,184),(80,185),(81,186),(82,187),(83,188),(84,189),(85,204),(86,205),(87,206),(88,207),(89,208),(90,209),(91,210),(92,197),(93,198),(94,199),(95,200),(96,201),(97,202),(98,203),(99,218),(100,219),(101,220),(102,221),(103,222),(104,223),(105,224),(106,211),(107,212),(108,213),(109,214),(110,215),(111,216),(112,217)], [(1,57),(2,58),(3,59),(4,60),(5,61),(6,62),(7,63),(8,64),(9,65),(10,66),(11,67),(12,68),(13,69),(14,70),(15,71),(16,72),(17,73),(18,74),(19,75),(20,76),(21,77),(22,78),(23,79),(24,80),(25,81),(26,82),(27,83),(28,84),(29,85),(30,86),(31,87),(32,88),(33,89),(34,90),(35,91),(36,92),(37,93),(38,94),(39,95),(40,96),(41,97),(42,98),(43,99),(44,100),(45,101),(46,102),(47,103),(48,104),(49,105),(50,106),(51,107),(52,108),(53,109),(54,110),(55,111),(56,112),(113,169),(114,170),(115,171),(116,172),(117,173),(118,174),(119,175),(120,176),(121,177),(122,178),(123,179),(124,180),(125,181),(126,182),(127,183),(128,184),(129,185),(130,186),(131,187),(132,188),(133,189),(134,190),(135,191),(136,192),(137,193),(138,194),(139,195),(140,196),(141,197),(142,198),(143,199),(144,200),(145,201),(146,202),(147,203),(148,204),(149,205),(150,206),(151,207),(152,208),(153,209),(154,210),(155,211),(156,212),(157,213),(158,214),(159,215),(160,216),(161,217),(162,218),(163,219),(164,220),(165,221),(166,222),(167,223),(168,224)], [(1,22,8,15),(2,23,9,16),(3,24,10,17),(4,25,11,18),(5,26,12,19),(6,27,13,20),(7,28,14,21),(29,43,36,50),(30,44,37,51),(31,45,38,52),(32,46,39,53),(33,47,40,54),(34,48,41,55),(35,49,42,56),(57,78,64,71),(58,79,65,72),(59,80,66,73),(60,81,67,74),(61,82,68,75),(62,83,69,76),(63,84,70,77),(85,99,92,106),(86,100,93,107),(87,101,94,108),(88,102,95,109),(89,103,96,110),(90,104,97,111),(91,105,98,112),(113,134,120,127),(114,135,121,128),(115,136,122,129),(116,137,123,130),(117,138,124,131),(118,139,125,132),(119,140,126,133),(141,155,148,162),(142,156,149,163),(143,157,150,164),(144,158,151,165),(145,159,152,166),(146,160,153,167),(147,161,154,168),(169,190,176,183),(170,191,177,184),(171,192,178,185),(172,193,179,186),(173,194,180,187),(174,195,181,188),(175,196,182,189),(197,211,204,218),(198,212,205,219),(199,213,206,220),(200,214,207,221),(201,215,208,222),(202,216,209,223),(203,217,210,224)], [(1,218),(2,219),(3,220),(4,221),(5,222),(6,223),(7,224),(8,211),(9,212),(10,213),(11,214),(12,215),(13,216),(14,217),(15,197),(16,198),(17,199),(18,200),(19,201),(20,202),(21,203),(22,204),(23,205),(24,206),(25,207),(26,208),(27,209),(28,210),(29,183),(30,184),(31,185),(32,186),(33,187),(34,188),(35,189),(36,190),(37,191),(38,192),(39,193),(40,194),(41,195),(42,196),(43,176),(44,177),(45,178),(46,179),(47,180),(48,181),(49,182),(50,169),(51,170),(52,171),(53,172),(54,173),(55,174),(56,175),(57,162),(58,163),(59,164),(60,165),(61,166),(62,167),(63,168),(64,155),(65,156),(66,157),(67,158),(68,159),(69,160),(70,161),(71,141),(72,142),(73,143),(74,144),(75,145),(76,146),(77,147),(78,148),(79,149),(80,150),(81,151),(82,152),(83,153),(84,154),(85,127),(86,128),(87,129),(88,130),(89,131),(90,132),(91,133),(92,134),(93,135),(94,136),(95,137),(96,138),(97,139),(98,140),(99,120),(100,121),(101,122),(102,123),(103,124),(104,125),(105,126),(106,113),(107,114),(108,115),(109,116),(110,117),(111,118),(112,119)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140),(141,142,143,144,145,146,147),(148,149,150,151,152,153,154),(155,156,157,158,159,160,161),(162,163,164,165,166,167,168),(169,170,171,172,173,174,175),(176,177,178,179,180,181,182),(183,184,185,186,187,188,189),(190,191,192,193,194,195,196),(197,198,199,200,201,202,203),(204,205,206,207,208,209,210),(211,212,213,214,215,216,217),(218,219,220,221,222,223,224)], [(1,63),(2,62),(3,61),(4,60),(5,59),(6,58),(7,57),(8,70),(9,69),(10,68),(11,67),(12,66),(13,65),(14,64),(15,84),(16,83),(17,82),(18,81),(19,80),(20,79),(21,78),(22,77),(23,76),(24,75),(25,74),(26,73),(27,72),(28,71),(29,105),(30,104),(31,103),(32,102),(33,101),(34,100),(35,99),(36,112),(37,111),(38,110),(39,109),(40,108),(41,107),(42,106),(43,91),(44,90),(45,89),(46,88),(47,87),(48,86),(49,85),(50,98),(51,97),(52,96),(53,95),(54,94),(55,93),(56,92),(113,175),(114,174),(115,173),(116,172),(117,171),(118,170),(119,169),(120,182),(121,181),(122,180),(123,179),(124,178),(125,177),(126,176),(127,196),(128,195),(129,194),(130,193),(131,192),(132,191),(133,190),(134,189),(135,188),(136,187),(137,186),(138,185),(139,184),(140,183),(141,217),(142,216),(143,215),(144,214),(145,213),(146,212),(147,211),(148,224),(149,223),(150,222),(151,221),(152,220),(153,219),(154,218),(155,203),(156,202),(157,201),(158,200),(159,199),(160,198),(161,197),(162,210),(163,209),(164,208),(165,207),(166,206),(167,205),(168,204)]])

88 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M2N2O4A4B4C4D7A7B7C8A···8H14A···14U14V···14AS28A···28L
order12···22222222244447778···814···1414···1428···28
size11···1444428282828222222214···142···24···44···4

88 irreducible representations

dim11111222222224
type++++++++++++
imageC1C2C2C2C2D4D4D7D8D14D14C7⋊D4C7⋊D4D4⋊D7
kernelC22×D4⋊D7C22×C7⋊C8C2×D4⋊D7C22×D28D4×C2×C14C2×C28C22×C14C22×D4C2×C14C22×C4C2×D4C2×C4C23C22
# reps111211313831818612

Matrix representation of C22×D4⋊D7 in GL6(𝔽113)

11200000
01120000
001000
000100
000010
000001
,
100000
010000
00112000
00011200
000010
000001
,
11200000
01120000
001000
000100
0000136
000069112
,
8650000
103270000
001000
000100
0000014
00001050
,
891120000
2330000
007911200
001000
000010
000001
,
81330000
82320000
0034100
00887900
000010
000069112

G:=sub<GL(6,GF(113))| [112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,69,0,0,0,0,36,112],[86,103,0,0,0,0,5,27,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,105,0,0,0,0,14,0],[89,2,0,0,0,0,112,33,0,0,0,0,0,0,79,1,0,0,0,0,112,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[81,82,0,0,0,0,33,32,0,0,0,0,0,0,34,88,0,0,0,0,1,79,0,0,0,0,0,0,1,69,0,0,0,0,0,112] >;

C22×D4⋊D7 in GAP, Magma, Sage, TeX

C_2^2\times D_4\rtimes D_7
% in TeX

G:=Group("C2^2xD4:D7");
// GroupNames label

G:=SmallGroup(448,1245);
// by ID

G=gap.SmallGroup(448,1245);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,675,1684,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^4=d^2=e^7=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=f*c*f=c^-1,c*e=e*c,d*e=e*d,f*d*f=c*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽